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MEDIDAS DE RISCO CONDICIONAIS PARA O PROBLEMA DE ALOCAÇÃO

DE RIQUEZA MULTIESTÁGIO

Fernando Queiroz de Lira Alexandrino

Julho/2017

Orientador: Juan Pablo Cajahuanca Luna

Programa: Engenharia de Produção

Este trabalho aborda o modelo de alocação de riqueza. O problema tem duas

questões principais. A primeira é como lidar com a incerteza nos preços das ações.

Como a decisão está em um contexto multiestágio, uma medida de risco condicional

deve ser adotada. A segunda questão é relacionada à resolução do problema de

otimização. A fim de evitar a maldição da dimensionalidade e permitir o uso de

técnicas eficientes, como o Stochastic Dual Dynamic Programming – SDDP, é ne-

cessário que a formulação tenha uma estrutura especial. Dependendo da medida de

risco, esta estrutura pode se tornar inviável. O objetivo deste trabalho é apresentar

formulações para o problema de alocação de riqueza multiestágio usando medidas

de risco condicionais e garantir tal estrutura. Dois modelos foram propostos e im-

plementados em um estudo de caso. Diferentes casos foram investigados alterando

as estratégias de operação, os ńıveis de risco/retorno e o uso de medidas com e sem

a propriedade da consistência de tempo. A metodologia foi dividida em três etapas:

composição do portfólio usando as ações do ı́ndice IBrX-50; geração da árvore de

cenários; e otimização do problema com o SDDP. Os resultados mostraram que foi

posśıvel obter altos retornos e manter as perdas abaixo de um limite.
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requirements for the degree of Master of Science (M.Sc.)

CONDITIONAL RISK MEASURES FOR THE MULTISTAGE WEALTH

ALLOCATION PROBLEM

Fernando Queiroz de Lira Alexandrino

July/2017

Advisor: Juan Pablo Cajahuanca Luna

Department: Production Engineering

This work addresses the wealth allocation model. The problem has two main

issues. The first is how to deal with uncertainty on the stock prices. As the decision

is in a multistage context, a conditional risk measure should be adopted. The second

issue is related to solve the optimization problem. In order to avoid the curse of

dimensionality and allow the use of efficient techniques, as Stochastic Dual Dynamic

Programming – SDDP, it is required that the formulation has a special structure.

Depending on the risk measure, this structure may become infeasible. The objective

of this work is to present formulations for the multistage wealth allocation problem

using conditional risk measures and to ensure such structure. Two models were

proposed and implemented in a case study. Different cases were investigated by

changing the operation strategies, the risk/profit levels and the use of measures

with and without the time consistency property. The methodology was split in

three steps: composition of the portfolio using the assets on IBrX-50 index; scenario

tree generation; and optimization of the problem with SDDP. The results shows

that it is possible to obtain high returns and keep the losses under a threshold.
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Chapter 1

Introduction

Investment on financial market is a complex task. Basically, two important

variables should be considered: risk and return. The risk could be defined as the

possibility of occurrence of unfavorable and unexpected events, usually leading to

negative results, such as capital loss. It is composed of market risk, operational risk,

credit risk and others variations. The return is the reward that can be achieved by

the agent for assuming risk. Market risk – the main focus of this work – is directly

related to the way assets price behave in face of market conditions. In the case of a

portfolio, the risk depends on the correlation between the individual assets and can

be reduced with capital diversification.

As it is known, the risk-return binomial tend to have positive correlation. So,

since high returns are related with high risks, a key issue for the investment success

is a good risk management. And to manage it is necessary to measure it. Risk

measures synthesize the risk of the investment using a real number and they are a

highly studied topic in portfolio optimization. The use of measures to minimize or

limit losses forces the policies to diversify the portfolio. Consequently it is possible to

reduce investments risks and obtain a higher return. Quantitative risk management

began from Markowitz theory [1] and it is the central issue of modern research on

finance.

The objective of the wealth allocation problem is to determine a strategy to

invest an initial amount of money over a period of time, avoiding losses. As the

future is uncertain and many variables are not under control the problem can be

solved using scenarios. These scenarios are sequences of states, representing possible
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instances or parameters combination that compose a given event, associated with

an occurrence probability. In addition, it is reasonable that the choices change over

time, defining the stages of the decision. At each stage, the agent needs to make a

decision according to information available until that moment and considering the

scenarios that have been traced for the future. These features lead to a multistage

stochastic programming problem.

1.1 Motivation

In many markets – as it happens in Brazil – a considerable part of investors

is not aware of risk measures and stochastic models that can help finance trading

decisions and its effect on portfolio diversification. An agent that is proposed to

measure and limit risk, but does not use appropriated measures, may be exposed to

losses or opportunity costs, because he made his choice considering poor informa-

tion. Similarly, the use of deterministic models leads to solutions based on a single

representation of the problem, which may have low occurrence probability and the

decisions taken may not be good for other scenarios that may occur.

The literature has several studies about risk-aversion optimization, which can

be focused either on the modeling of the asset price series, on methodologies to

adequately measure the risk or on the algorithms for solving the stochastic problem.

A few works solve this problem in a single stage using assets from the Brazilian stock

exchange [2, 3]. A multistage decision program should consider conditional risk

measures and it also requires special techniques to be efficiently solved. Because the

curse of dimensionality, the problem easily becomes prohibitive. These techniques

are based on Benders decomposition. However, the problem must have a special

structure.

One of the first studies of the multistage wealth allocation problem was [4]. This

work considers a portfolio with 13 assets, 3 stages and 50 scenarios per stage. More

recently, in [5] the problem is solved in 5 stages. The portfolio is composed by 11

assets and the uncertainty is modeled using 1000 scenarios per stage. In [6], a case

study considers 4 assets, 15 stages and 50 scenarios at each stage. To overcome the

computational effort, in [7] an analytical metric to limit the risk is proposed instead
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optimization algorithms. The problem contains 10 assets and the investment period

has 50 stages.

Observe that the number of assets is relatively small compared to all the options

available to the investor. Considering more assets would rise the computational time,

and this is already an issue when solving the problem. In order to provide a more

realistic approach of the problem, the models should receive a given risk tolerance

level or return ratio and optimize the portfolio using a large set of scenarios and

also a large set of assets. This context justify the relevance of this study.

1.2 Objective and Contributions

This work proposes models for the wealth allocation problem using the multi-

stage stochastic programming with conditional risk measures. Numerical tests were

performed using a case study with a large set of assets from the Brazilian stock

exchange. To achieve this objective, it was necessary to perform the following tasks:

1. Perform a revision of stock price models commonly used on finance, discussing

their assumptions and applicability;

2. Extend one-period conditional risk measures to the multistage case;

3. Propose different models for the multistage wealth allocation problem;

4. Select a large set of assets from the Brazilian stock exchange to compose the

portfolio;

5. Generate the scenario tree to represent the problem uncertainty using historical

stock prices;

6. Solve the optimization problem using an efficient technique for large-scale in-

stances; and

7. Analyze the solutions from different points of view, such as the composition

of the portfolio, the return on investment and the losses distribution.

The main contribution of this work is the methodology for dealing with the

wealth allocation problem. We propose two multistage stochastic programming
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based models that considers risk over losses. Whereas our models are rather general,

in order to make them feasible for real life applications, we provide some mechanisms

for solving numerically large instances of the models. To the best of our knowledge,

these large-sized numerical backtests were never performed in the literature.

1.3 Outline

This work is organized in six chapters. The first makes an introduction to the

theme. Chapter 2 consists of a literature review on the modeling of assets price

through scenario trees, as well as risk measures appropriate to this class of prob-

lems. It also presents an algorithm that can solve stochastic multistage problems

efficiently. Throughout this chapter references are made to various similar works,

both in quantitative finance and other areas. Chapter 3 is dedicated to discuss two

formulations for the multistage wealth allocation problem. Chapter 4 details the

methodological procedures followed during the problem optimization, whose results

are presented in Chapter 5 – the portfolio compositions found in this work are also

available in Appendix A. Finally, Chapter 6 gives a few future research suggestions.
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Chapter 2

Literature Review

Financial assets involve risk. Recent studies on risk-averse optimization have

focused on two important topics: modeling techniques for stock price and measures

to avoid losses associated to investment choices. A third topic is related to multistage

stochastic programming, that usually involves high computational cost both in terms

of the number of scenarios and the use of non-linear elements.

2.1 Scenario Generation

The first topic corresponds to the Scenario Generation (SG). Decision-making in

finance occurs in a context of high uncertainty about the future. In many practi-

cal applications this uncertainty is addressed through data aggregation, taking for

example the average of a given set of observations and adopting it as a prediction.

When there is a lot of unknown information the averages of each of them lead to

a single representation of the problem making it deterministic, and there are few

guarantees that the optimal solution of this configuration is also optimal (or simply

good) for all other cases, especially to the one which in fact will happen. SG is a

process of creation of finite realizations that describe the vector of random variables

of the parameters of the problem accompanied by their respective probabilities of

occurrence.

In [8] the desirable properties of SG in finance are found. Correctness implies

that the set of scenarios is a “correct” representation of the random returns of the

assets, but as we do not know the actual distributions, the term “correct” is related
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to the model believed to be the most appropriate to approximate the dynamics of

prices. For example, several models consider that the volatility of stock prices varies

over time, while for others it is constant. Since the random variables are correlated,

consistency means the values of a given scenario must be correlated with each other.

In other words, given a group of assets in the same industry sector it is expected that

the returns of these assets has the same behavior in any scenario, be it gain or loss.

Finally, stability leads to a “stable” decision, that is, the optimal solutions obtained

when solving optimization problems with different SGs do not vary significantly in

themselves.

Several works have sought to evaluate the quality of the scenario generators (see

[9, 10]) but this is a difficult task since the actual values are unknown. One way

would be to choose a date prior to the date of the last available information for SG

and then compare with the data already known. Once the method is validated, all

the information available so far is used to generate the future scenarios. However, the

main concern in SG is its capability to support a good decision. Since the scenarios

are not a prediction of the future, some are optimistic and other pessimistic, the

investment strategy should perform well in any case [8].

One of the most used asset price models is the Geometric Brownian Motion

(GBM), which approximates the stock prices – stochastic processes in discrete time

– through continuous time stochastic processes. Let be St = (S1
t , S

2
t , . . . , S

n
t ) a vector

whose each entry represents the price of asset i = 1, . . . , n at time t. These prices

may be correlated. It is assumed that the price vector St follows a multidimensional

GBM, i.e.

dSt = St ◦ (µdt+ AdWt), (2.1)

where the operator ◦ means the product between two vectors is made termwise,

µ ∈ Rn and Wt is described by a multidimensional Wiener Process [11].

The solution to this system of stochastic differential equations is

St = S0 ◦ exp
((
µ− 1

2
diag(Σ)

)
t+ AWt

)
(2.2)

where Σ = AA> and diag(Σ) is the vector whose entries are the elements of the

diagonal of Σ. The price process can be rewritten as

log(St) = log(S0) +
(
µ− 1

2
diag(Σ)

)
t+ AWt. (2.3)
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Note that for ∆t > 0

log(St+∆t) = log(St) +
(
µ− 1

2
diag(Σ)

)
∆t+ A(Wt+∆t −Wt). (2.4)

This expression can be used for simulating the process St. For this, note that

for a sample S0, S∆t, S2∆t, . . . , ST∆t and defining the returns by

rk = log(Sk∆t)− log(S(k−1)∆t), k = 1, 2, . . . , T (2.5)

it is possible to have, because of the properties the brownian motion Wt, that

r1, r2, . . . , rT are i.i.d. with joint normal distribution N (µ′,Σ′), where µ′ = ∆t

(
µ−

1
2
diag(Σ′)

)
and Σ′ = ∆tΣ. For estimating the parameters of this distribution the

maximum likelihood criterion can be used, leading to

µ′ =
1

T

T∑
k=1

rk and Σ′ =
1

T

T∑
k=1

(rk − µ′)(rk − µ′)>. (2.6)

Finally, to simulate a new samples of prices, it is enough to simulate a sample

of log-returns rk and take into account that

Sk∆t = S(k−1)∆t exp(rk), k = 1, 2, . . . , T. (2.7)

Note that, for generating a sample of log-returns rk knowing µ′ and Σ′, it is

possible to generate a sample Nk of N (0, In) and make rk = µ′ +
√

∆tANk. The

matrix A can be computed from Σ′ by performing a Cholesky factorization.

Although GBM has been used in many works (e.g. [12, 13, 7]), it considers

that price volatility is constant over time, which is a reasonable assumption when

dealing with a short-term period. However, increasing the time horizon, the financial

market presents a cyclical behavior, alternating periods of low and high volatility.

This phenomenon is known as “volatility clustering” and implies that the volatility

perturbations of returns will have an influence on the expected volatilities for the

future. In other words, the information that comes to the market is correlated in

time [14].

Consider then that the sigma-algebra Ft represents the information available in

time t. It is possible to write rt = r̄t + εt, where r̄t is the expected value of rt and εt

is the error process. GARCH models – from Generalized Autoregressive Conditional

Heteroskedasticity [15] – are an approach to evaluate the volatility of returns. The

7



GARCH(η, ν) process is

εt|Ft−1 ∼ N(0, σ2
t )

σ2
t = π0 + π1ε

2
t−1 + · · ·+ πηε

2
t−η + ψ1σ

2
t−1 + · · ·+ ψνσ

2
t−ν

(2.8)

where η ≥ 0, ν > 0, γ0 > 0, πη ≥ 0 and ψν ≥ 0. Note that the variance depends on

its own previous values and on the previous error processes. For SG purposes the

maximum likelihood criterion allows to estimate the parameters πη and ψν , that are

used to compute σ2
t and it is possible to generate returns samples rk recursively.

GARCH models have been extended in the most distinct directions. Surveys on

the multivariate approaches regarding the time evolution of the prices volatility can

be seen in [16, 17]. Several works have sophisticated the original model considering

asymmetric volatility [18, 19, 20], that is, negative news tend to generate a greater

and faster disturbance in volatility when compared to positive news. In [21, 22] the

modeling is turned to the standard deviation instead of the variance. A method to

evaluate the quality of scenarios generated by different models is found in [23].

Recent studies on SG in finance have used regime-switching approaches, espe-

cially Hidden Markov Models (HMM). Basically, these models consider that there

is another “hidden” stochastic process behind the stochastic process of returns rep-

resenting market scheme changes over time. At each instant t the market is in one

of several states and St has a different distribution for each one. In this perspective,

single models (like GBM and GARCH) are valid only for short periods of time while

HMM are suitable for long-term modeling.

Another advantage is that regime-switching contributes to the representation

of extreme events which occur with low probability and are the result of given

conditions of the market. It is especially useful to consider these events when solving

optimization problems with risk aversion, because it is desirable to have a decision

that is good in any scenario that may occur. The optimal solution minimizes losses

considering the whole set of scenarios, even if this “penalizes” the objective function

of those most optimistic; after all, the scenario that will actually occur is unknown.

Papers involving HMM in finance can be found in [10, 24, 25]. In addition to GBM,

GARCH and its extensions and HMM, the literature also has other techniques for

approaching stock prices, such as stochastic volatility models and grey theory (see

for example [26, 27]).
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Finally, it is possible to highlight two other issues related to SG. The first one

is scenario tree reduction. In multistage stochastic programs, it is convenient to

consider that the sigma-algebras Ft are all finite for t ∈ D = {1, 2, . . . , T}. This

process determines a filtration FD = {Ft}t∈D that can be modeled as a tree. For

any time t, since Ft is finite, it is determined by a partition of probability space.

This partition is denoted by Ωt. Note that when representing the filtration as a tree,

the set Ωt is identified with the set of nodes at level t. Also, for each element a ∈ Ωt

and d > t it is possible to define the set Cda = {b ∈ Ωd : b ⊂ a}. In the language

of trees, Cda represents the set of all nodes at level d that are descendants of a. In

particular the set Ct+1
a of all children of node a is denoted by Ca. Note that if a

random variable Z is Ft-measurable, then it is constant on each element of Ωt, and

so, it can be identified by a vector (Za)a∈Ωt ∈ R|Ωt|.

When the tree becomes reasonably large it may be necessary to employ some

algorithm that performs scenario reduction in order to reduce the computational

effort of the optimization problem. For each level t of the tree, it is found an

optimal set Ω∗t containing the nodes that best represent the distribution at this

level, minimizing a given measure δ (see [28] to correctly select δ). In general, these

algorithms have an outer iteration that adds elements to Ω∗t , followed by an inner

iteration that calculates the conditional probabilities. The first step consists of a

combinatorial problem of type |Ω∗t |-median, which is NP-hard. For this reason it

is common to use heuristic methods. For scenario tree reduction techniques and

numerical examples, see [29].

The second issue to be highlighted is ex post evaluation. When considering SG as

input for stochastic programs we are using only one of the functions of the scenarios

(ex ante). Another direction that can be explored is to evaluate the quality of the

decisions obtained after solving the optimization problem by simulating the future.

Many works on stochastic programming with risk aversion perform a backtesting

step where the optimal solutions are confronted with historical data (or it is wait-

ing some time to collect new observations) in order to verify if the real losses have

remained under the adopted limits. If the results are satisfactory, a good perfor-

mance is also expected in the future. However, this approach validates the results

of a single realization of the random parameters (the one that actually occurred).
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Then SG can be used to obtain a large set of scenarios for the future and analyze

the performance of the decision in these scenarios, using for example risk measures,

statistical measures – of centrality and dispersion – or Sharpe ratio and Jensen’s

alpha, for example, in a context of finance. A discussion on ex post evaluation can

be seen in [8].

2.2 Conditional Risk Measures

The risk of an investment was always a relevant aspect. Quantitative risk man-

agement began from Markowitz theory [1] and it is the central issue of modern

research on finance. A significant portion of the risk is associated with random

causes that could be eliminated with portfolio diversification. The use of measures

to minimize or limit losses forces the policies to distribute the wealth among the as-

sets. Risk measures are intended to synthesize the risk of a financial position using

a real number.

The Value-at-Risk (VaR) is the most widely used and known measure and reports

the worst loss that can occur in a given time horizon for a given risk tolerance

level. However, if on one side are the popularity and ease of implementation and

verification of VaR, on the other side are two negative aspects to its use. The first

is that it does not model the principle of financial diversification, i.e. a diversified

portfolio can raise the risk rather than reduce it. This occurs, for example, when the

dependence on the marginal distributions of the assets is highly asymmetric. The

second disadvantage is the lack of information about the magnitude of the loss is

when it exceeds the VaR. A more sophisticated risk measure is the Average Value-at-

Risk (AVaR), which corrects the failures of its predecessor and can be formulated as a

linear programming problem [30]. For these reasons, other measures were developed

from AVaR. In [31] a chronological evolution of them is presented. A comprehensive

and modern survey of financial risk measures as well as their extensions can be found

in [32].

In [3] a model for portfolio selection is presented which is based on the risk

analysis of financial assets. The scenario tree of the returns was generated using

variations of the GARCH model and VaR and AVaR measures were used to model
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the risk. Both are sensitive to the sample size and are appropriate for studies where

large samples are available or when sample size is controlled. In [33] a portfolio

optimization problem is solved in a financial institution focused on the manage-

ment of pension funds with considerable volumes of capital. For this, a model that

contemplates the benefits generated by the inclusion of derivatives and AVaR was

formulated. The study uses assets price simulation and option pricing with portfolio

optimization, aiming at minimizing the AVaR.

Risk measures are also used in areas other than finance. The work [34] presents

studies aimed at optimizing the expected return of a portfolio composed by in-

vestment assets of a company in the energy segment, which is responsible for the

acquisition, sale and transportation of pipelines. The objective of the work was to

develop a model that supported the portfolio selection with the presence of some

degree of irreversibility, in order to meet given criteria of optimality and opera-

tional and financial constraints. The risk was treated using AVaR. The author uses

techniques of decomposition by cutting planes and Lagrangian relaxation. It was

possible to obtain results with relatively small gap and satisfactory computational

effort.

In a context of multistage decision problem, a conditional risk measure should

be considered. Let be Mt the space of random variables being considered that are

Ft-mensurable and Zt ∈ Mt. A conditional coherent risk measure is a mapping

ρ(Zt+1) : Mt+1 → Mt such that it satisfies the following properties. Assume that

Zt represents a loss distribution.

(i) Positive homogeneity: ρ(γZt+1) = γρ(Zt+1), γ ≥ 0

(ii) Monotonicity: ρ(Zt+1) ≥ ρ(Z ′t+1), if Zt+1 ≥ Z ′t+1

(iii) Convexity: ρ(γZt+1 + (1− γ)Z ′t+1) ≤ γρ(Zt+1) + (1− γ)ρ(Z ′t+1), γ ∈ [0, 1]

(iv) Translation equivariance: ρ(Zt + Zt+1) = Zt + ρ(Zt+1)

Positive homogeneity indicates that the risk of a financial position is proportional

to its size. The axiom of monotonicity shows that positions that lead to larger

losses (e.g. Zt+1 > Z ′t+1) also have higher risks. Convexity models the principle

of diversification and, as a product, it allows us to use convex theory to facilitate
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our analysis. The translation equivariance implies that by adding (subtracting) a

given value to the variable, as it models a loss situation, the risk measure increases

(decreases) by the same amount – note that Zt ∈Mt.

An example is the Conditional Average Value-at-Risk CAV aRα(Zt+1|Ft) :

Mt+1 →Mt with risk tolerance level 0 < α < 1, defined by [35, p. 315]

CAV aRα(Zt+1|Ft)(ωt) = min
u∈Mt

{
u(ωt) +

1

α
E
[
[Zt+1 − u]+|Ft

]
(ωt)

}
(2.9)

where ωt is a particular outcome from the sample space Ωt.

Once a given measure ρ is chosen the risk can be modeled in different ways. The

first one is adopting the sum of stage-wise independent risks. In this case,

ρ(Z1, . . . , ZT ) = Z1 + ρ2(Z2) + · · ·+ ρT (ZT ). (2.10)

This approach is quite intuitive: the risk is measured at each date separately. How-

ever, minimizing the function (2.10) can lead to inconsistent policies.

Time consistency is a desirable property in risk measures and a concept still

under discussion in the literature. According to [36] a policy is (time) consistent

when the decisions made in t are in agreement with the planning made in t− 1 for

the scenario that actually occurred. In other words, assume the problem is solved

once and there is a solution for each node of the scenario tree. When solving the

problem again at a given future stage and considering the new information available

until this new date, the same solutions should be found. These authors prove that

the measure (2.10) is inconsistent when ρt = CAV aRα and α moves away from zero

– that is, when the solution is no longer driven by the worst case path.

Another approach is to consider a nested multistage risk measure ρ̃ : M1×M2×

· · · ×MT → R, defined by

ρ̃(Z1, . . . , ZT ) = ρ1 ◦ ρ2 ◦ · · · ◦ ρT (ΣtZt). (2.11)

This measure will always lead to consistent policies according to the concept

adopted in [36]. In fact, nested risk measures imply time consistency [37]. The

problem can be written recursively by stage through Bellman equations and op-

timized using dynamic programming algorithms, but obtaining upper limits for

the objective function is not a trivial task (see [38, 6]). In [35, p. 326] a con-

vex combination between the expectation of the portfolio’s value and CAVaR in
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the last period is proposed. A similar approach is seen in [5], where a function

ρt(Zt) = (1 − Λt)E[Zt|Ft−1] + ΛtCAV aRα(Zt|Ft−1), with Λt ∈ [0, 1], is used to im-

plement a risk aversion policy. Other formulations for nested measures in multistage

stochastic programs can be found in [39, 40].

The last way to model risk is by adopting a multiperiod composite measure, i.e.

ρ̂(Z1, . . . , ZT ) = Z1 + ρ2(Z2) + Eω[2]
[ρ
ω[2]

3 (Z3)] + · · ·+ Eω[T−1]
[ρ
ω[T−1]

T (ZT )], (2.12)

where ω[t] denotes the history until t. This is an intermediate approach between

separated and nested cases. The index in Eω[t−1]
and ρ

ω[t−1]

t indicates that the ex-

pectation and the measure are with respect to the history ω[t−1]. In [36] the authors

call the function ρ̂ expected conditional risk measure and prove that it is consis-

tent. One advantage of this approach is a better understanding of how risk is being

treated, which is hard to note when considering nested measures. In addition, it

is possible to implement existing neutral-risk algorithms directly to optimize the

function ρ̂. Applications using composite measures, especially in the particular case

when ρt = CAV aRα, can be seen in [36, 41, 42].

Time consistency was also presented by other works. According to [35, p. 321] it

occurs when at each stage of the problem the optimal decisions should not depend

on scenarios which will not happen. For [43], a policy is consistent when decisions

planned for the future stages will actually be implemented. This work points out that

the time inconsistency can lead to suboptimal solutions and/or does not consider the

risk in intermediate stages, proposing a methodology to calculate the suboptimality

gap between a policy that was planned in a given stage for the following stages and

another one that is being implemented on each date. In this last case, the algorithm

is solved at each stage. From a numerical experiment the authors conclude that this

gap can be ignored in extremely conservative or aggressive risk strategies, but grows

as a balance between risk and return on investment is achieved.
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2.3 Multistage Stochastic Programs

A generic linear T -stage stochastic programming problem has the form [35, p.

64]

min
A1x1=b1
x1≥0

{
c>1 x1 +E

[
min

E2x1+A2x2=b2
x2≥0

{
c>2 x2 +E

[
· · ·+E[ min

ET xT−1+AT xT=bT
xT≥0

c>T xT ]
]}]}

(2.13)

where (c1, A1, b1) are deterministic and a few or all entries of (ct, At, Et, bt), ∀t =

2, . . . , T , are random. The subscript in min{·} indicates that each minimization

problem is subject to the corresponding constraints, where all the entries of xt are

non-negative variables. The above problem can be solved by its deterministic equiv-

alent form where all possible scenarios are represented by constraints. This method

leads to a large problem that quickly becomes intractable in real applications, both

by the exponential growth of computational time and by the exhaustion of computer

memory.

An efficient way to solve multistage stochastic programs is the Stochastic Dual

Dynamic Programming (SDDP) [44]. This algorithm is based on the Benders de-

composition technique and approximates the future cost function using a piece linear

function. For this, a set of cuts is added to the problem at each iteration. To use

SDDP the premise that the scenarios are stage-wise independent should be assumed,

i.e. a given realization ωt ∈ Ωt does not depend on the history ω[t−1]. Then the cuts

can be shared within each stage. In addition, SDDP uses a sample of paths to rep-

resent the entire scenario tree avoiding the curse of dimensionality that is common

in dynamic programming techniques.

The notation used here was presented by [38]. Consider a problem (2.13) decom-

posed into T stages with n variables xt and m constraints. Assume that the random

right-hand-side vector bt(ωt) has a finite number of realizations. As it is known, the

decisions made in t will influence the cost of the stage t+ 1. This cost is defined by

Qt+1(xt, ωt+1) and it is assumed that QT+1(xT , ωT+1) = 0. The first-stage problem

is

z = min c>1 x1 + E
[
Q2(x1, ω2)

]
s. t. A1x1 = b1

x1 ≥ 0

(2.14)
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and for the next stages the problem is

Qt(xt−1, ωt) = min c>t xt + E
[
Qt+1(xt, ωt+1)

]
s. t. Atxt = bt(ωt)− Etxt−1 : λt(ωt)

xt ≥ 0

(2.15)

where ct ∈ Rn, xt ∈ Rn, At and Et are m × n matrices, bt(ωt) ∈ Rm and λt(ωt)

is the vector of dual variables associated to the constraints Atxt = bt(ωt)− Etxt−1.

Assume that the problem (2.15) has a feasible solution at stage t for all values of

xt−1 that are feasible at stage t− 1.

Each iteration of the SDDP is composed by two steps called forward and back-

ward. At the first one a total of J scenarios are sampled using Monte Carlo simula-

tion and, starting from the root node, the recursive problem is solved for all scenarios

J . By reaching the last stage, there is no uncertainty in the objective function and

the problem is easily solved. A given convergence criterion is computed and in case

it is not satisfied a backward step is performed. This step adds J cuts to approx-

imate the cost-to-go function of the stage T − 1 and recalculate the solutions that

were found for this stage in the last forward step. Then, the algorithm moves to

T − 1 and recalculate the solution for T − 2, and so on until the stage t = 0. The

term E
[
Qt+1(xt, ωt+1)

]
is replaced by the variable θt+1 and constraints

θt+1 − ḡl>t+1,jxt ≥ h̄l>t+1,j, l = 1, . . . , L, j = 1, . . . , J (2.16)

are added. Thus, the problem becomes

z = min c>1 x1 + θ2

s. t. A1x1 = b1

θ2 − ḡl>2,jx1 ≥ h̄l>2,j, l = 1, . . . , L, j = 1, . . . , J

x1 ≥ 0

(2.17)

for t = 1 and

Q̃t(xt−1, ωt) = min c>t xt + θt+1

s. t. Atxt = bt(ωt)− Etxt−1

θt+1 − ḡl>t+1,jxt ≥ h̄l>t+1,j, l = 1, . . . , L, j = 1, . . . , J

xt ≥ 0

(2.18)

for t = 2, . . . , T .
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The idea behind the backward step is that once the input xt that optimizes

the term E[Qt+1(xt, ωt+1)] in the stage t + 1 is known, the algorithm goes back

to the stage t and adds the required cuts to get the output xt we want. To find

the set of cuts, the problem (2.18) at t + 1 is solved for all ωt+1 ∈ Ωt+1. Let be

λ̄l>t+1,j = E[λt+1(ωt+1)], the gradient of the l-th cut for j is

ḡlt+1,j = −λ̄l>t+1,jEt+1 (2.19)

and the intercept is defined as

h̄lt+1,j = E
[
Qt+1(x̄lt(j), ωt+1)

]
+ λ̄l>t+1,jEt+1x̄

l
t(j) (2.20)

where x̄lt(j) is the solution computed in the last forward pass.

The algorithm stops when the lower bound of z (called z) is sufficiently close to

the average of the costs among the scenarios, that is called upper bound or z̄. It

can be calculated by

z̄ =
1

J

J∑
j=1

T∑
t=1

c>t x̄
l
t(j) (2.21)

Thus, the convergence test with 100(1 − β)% confidence level proposed by [44]

is

z > z̄ − zβ/2
σ√
J

(2.22)

where zβ/2 comes from standard normal distribution and σ is the standard deviation

of the costs, i.e.

σ =

√√√√ 1

J

J∑
j=1

( T∑
t=1

c>t x̄
l
t(j)
)2

− z̄2. (2.23)

A pseudocode for SDDP is shown in Algorithm 1. Remark that the problem

(2.18) always has a feasible solution at t for all feasible values of xt−1 at t − 1.

Artificial variables with penalty coefficients can be added in the objective function

to ensure this premise. More details on the implementation of SDDP can be seen

in [38], where the authors also propose that the algorithm be executed up to a fixed

number of iterations.

Algorithm 1 SDDP algorithm

1: for t← 2 to T do

2: θt ← −∞
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3: end for

4: L← 0

5: l← 1

6: procedure Forward

7: t← 1

8: Solve problem (2.17)

9: for j ← 1 to J do

10: x̄l1(j)← x1

11: end for

12: for t← 2 to T do

13: for j ← 1 to J do

14: xt−1 ← x̄lt−1(j)

15: Solve problem (2.18)

16: end for

17: end for

18: end procedure

19: procedure ConvergenceTest

20: z = z

21: Compute z̄ from equation (2.21)

22: Compute σ from equation (2.23)

23: if z > z̄ − zβ/2√
J
σ then

24: Stop

25: else

26: Call Backward

27: end if

28: end procedure

29: procedure Backward

30: for t← T to 2 do

31: for j ← 1 to J do

32: for ωt ∈ Ωt do

33: Solve problem (2.14)

34: end for
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35: Compute the l-th cut from equations (2.15) and (2.16)

36: end for

37: end for

38: L← L+ 1

39: l← l + 1

40: Call Forward

41: end procedure

In [45] a few modifications in the standard SDDP are discussed, like other meth-

ods for sampling the set of scenarios and a stopping criterion based on statistical

hypothesis testing. In [6] it is proposed a methodology to obtain the upper limit of

the risk estimation problem using AVaR, which can be used in more efficient stop-

ping rules for algorithms such as SDDP, as demonstrated. In [46] a combination

between SDDP and the L-shaped method is presented in order to obtain tempo-

ral dependence and ensure consistency. Nested decomposition is a technique very

similar to SDDP, except that it does not use scenario sampling. The forward pass

is solved by considering the whole scenario tree and, therefore, the problem may

becomes intractable more easily. In general, convergence is achieved when the dif-

ference between z̄ and z is lower than a given tolerance. An example of its use can

be found in [47], where a problem that maximizes the commercialization of small

hydroelectric power plants is solved.

Other works deserve attention. [4] uses an algorithm based on Benders decompo-

sition and sampling by importance for solving a multistage asset selection problem

with linear programming. The work [7] propose a general multistage model for the

wealth allocation problem based on an analytical metric to limit the risk. The as-

set returns were obtained from different methodologies for scenario tree generation,

such as GBM and GARCH(1,1) and GARCH(2,2), and the numerical results were

compared with the classical VaR approach. For all cases the analytical technique

proved to be satisfactory as a measure of risk, being particularly useful in situations

where computational time is a limited resource.

In [48] a risk-averse stochastic hydrothermal planning problem is solved consid-

ering constraints that limit the risk associated with the energy deficit. The author

uses Lagrangian relaxation for the decomposition of the problem and adds AVaR
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constraints in the standard SDDP. The problem is solved for three stages and each

node of the scenario tree was branched into five children, resulting in 125 scenarios

in the last stage. The formulation consists of limiting the energy deficits with a

previously defined risk level, aiming to minimize costs and to achieve reliability in

the energy supply.

The work [49] formulates a multistage mixed integer programming model for the

operation of hydrothermal systems, in which compares criteria to make convex the

cost-to-go functions using a non-traditional focus of the Lagrangian relaxation tech-

nique of recursive constraints. Three methodologies are used to compare the results:

the first one considering the Lagrange multipliers obtained by linear relaxation of

the original problem; the second considering the multipliers obtained from the solu-

tion of a local convex problem; and the third considering the second approach with

a search procedure for updating the multipliers. Such problems, even when they

are small or medium size, suffer from the curse of dimensionality. For this reason,

decomposition techniques are more adequate to solve this kind of problem, since

many smaller problems are solved instead of a single and complex problem.
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Chapter 3

Wealth Allocation Problem

An agent has n assets in which he can invest an initial amount of money W0 over

a period of time [0, T ]. The asset prices are modeled as a stochastic process, denoted

by St ∈ Rn, for t ∈ D := {0, 1, 2, . . . , T}, where the i-th entry Sit represents the prices

of the i-th asset at time t. This process determines a filtration FD = {Ft}t∈D. Each

element in D represents a trading day. Among all these trading days there exists

several dates T := {0 = t0 < t1 < t2 < · · · < tK < T} at which one is allowed to

perform some investment operations like selling or buying assets shares, according

to some conditions.

The objective is to determine an investment strategy, represented by a FT -

adapted stochastic process xt ∈ Rn, where the entry xit represents the number of

shares of i the agent has at time t. From these two processes, the amount of money

Wt owned by the investor at time t can be determined as follow

Wt = S>t x[t]T , where [t]T := max{t′ ∈ T : t′ ≤ t}. (3.1)

The process xt must satisfy operational conditions that will be mentioned as

basic constraints.

3.1 Basic Constraints

Assume the investment strategy x satisfies the basic constraints if x ∈ B. Here

the set B is described by a number of constraints intended to model basic aspects

which the investment policy should satisfy. A few examples are discussed below.
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Positions: To restrict the investment strategy only to long positions, constraints

of the form xt ≥ 0,∀t ∈ T should be included. Of course, it is possible to

devise more sophisticated policies where it is possible to allow short positions

at a few dates.

Initial Portfolio: The meaning of this constraint is clear: to ensure that only W0

is invested initially, i.e.

W0 = S>0 x0. (3.2)

Self-financing Portfolio: This constraint aims to ensure that along all the in-

vestment period the investor will not be able to add or withdraw money, so

S>tkxtk−1
= S>tkxtk , ∀k = 1, 2, . . . , K. (3.3)

These constraints lead to the following standard structure which will serve as

the basis for other more complete models where the risk and return of the policies

are managed.

min f(x)

s.a S>0 x0 = W0

S>tk(xtk − xtk−1
) = 0, ∀k = 1, 2, . . . , K

xt ≥ 0, ∀t ∈ T

(3.4)

For solving the multistage stochastic problem it is possible to use some especial

techniques, otherwise, because of size problem, it easily becomes prohibited. In

order to use special methods like SDDP, the problem is required to have an special

structure. For ensuring a proper structure it is necessary to make a change of

variables whereby: wit(ωt) = Sit(ωt)x
i
t(ωt). Since xit(ωt) is the number of shares

owned by agent of the asset i, wit(ωt) represents the amount of money he has invested

on that asset. Then

Wt(ωt) =
∑
i

wit(ωt). (3.5)

An important fact about the process xt is that the model allows changes only at

dates t ∈ T and so if t1, t2 ∈ T , t1 < t2, then xt1 = xt for t1 ≤ t < t2. This important

fact can be modeled by adding other constraints. Denoting by Ri
t the return of Si
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at time t (i.e. Ri
t := (Sit−Sit−1)/Sit−1), it is easy to verify that Sit = (1 +Ri

t)S
i
t−1. So

xt1 = xt for t1 ≤ t < t2 holds if and only if wit = (1+Ri
t)w

i
t−1, for t = t1+1, . . . , t2−1.

Using this new variables wit ≥ 0 it is possible to rewrite all conditions of B in the

model. For example, the initial portfolio constraint just means W0 =
∑

iw
i
0. The

self-financing constraint can be expressed as∑
i

witk−1(1 +Ri
tk

) =
∑
i

witk , for k = 1, 2, . . . , K. (3.6)

A convenient way of expressing all the constraints of the model is by defining

the sets

X0 =
{
w0 : W0 =

∑
i

wi0
}

(3.7)

and

Xt(wt−1, Rt) =


{
wt :

∑
iw

i
t−1(1 +Ri

t) =
∑

iw
i
t

}
, if t ∈ T ;{

wt : wit = (1 +Ri
t)w

i
t−1∀i

}
, otherwise.

(3.8)

With this notation, the multistage problem can be expressed as

min f(w0, . . . , wT )

s.t. w0 ∈ X0

wt ∈ Xt(wt−1, Rt) for t = 1, 2, . . . , T

(3.9)

and, obviously, it is possible to include more constraint to each set Xt whenever

necessary to ensure gains or to limit losses.

3.2 Model 1

A first approach is to maximize the expected value of the portfolio at the end of

the investment period T . This can be made by replacing the objective function of

(3.9) by E[WT ] with negative sign, since the problem is of minimization. Note that

the implementation of the modeling handled so far would guide the strategies in

which all money is applied to the highest return action between the dates tk−1 and

tk, considering the process St. In choosing the most profitable assets the agent is

also exposed to the great risks that accompany them, since the correlation between

risk and return in the real problem tends to be positive. This may lead to large
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losses and inviability of the investment. Thus, it is necessary to implement risk

handling policies using constraints.

The model will observe the returns of the portfolio along the investment period

and will search for policies that, in some sense, can avoid large losses. For two

consecutive trading dates t − 1 and t, the portfolio return can be defined by the

expression

Rt =
Wt −Wt−1

Wt−1

. (3.10)

From this definition note that Rt is Ft-measurable. At a trading date t, since the

return Rt+1 is uncertain, a risk measure can be used for estimating the risk of having

losses at that day. Intuitively, this means anticipating the information revealed in

t+ 1 for the decision to be made in t. Using a conditional risk measure it is possible

to set a limit to the potential loss.

A good choice for this model is to consider the risk measures separately at each

stage. Although the function (2.10) is not time consistent for all cases when it is

used to minimize the risk (as seen in the Section 2.2), it has some advantages that

can be exploited, especially in this case when the policies maximize the return by

limiting the risk rather than minimizing losses. First, it is possible to determine a

sequence of real numbers φ0, φ1, . . . , φT−1 ∈ [0, 1] representing the thresholds to be

adopted at each stage. This corresponds to the following constraints

ρt(−Rt+1) ≤ φt, w.p.1, ∀t = 1, . . . , T − 1. (3.11)

Secondly, this measure maintains the proper structure to use the standard SDDP

directly in the case where ρt = CAV aRα. If the filtration Ft is finite, it is easy to

verify that for Zt+1 ∈Mt+1 and Zt ∈Mt with Zt ≥ 0, then

CAV aRα(ZtZt+1|Ft) = ZtCAV aRα(Zt+1|Ft). (3.12)

Since Rt+1 = Wt+1−Wt

Wt
, with Wt being Ft measurable, it is possible to write

CAV aRα(−Rt+1|Ft) =
Wt + CAV aRα(−Wt+1|Ft)

Wt

(3.13)

thus, the constraint

CAV aRα(−Rt+1|Ft) ≤ φt (3.14)

is equivalent to
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CAV aRα(−Wt+1|Ft) ≤ (φt − 1)Wt (3.15)

for t = 1, . . . , T − 1. By the equation (2.9), the above constraint can be expressed

as a linear programming problem for each ωt ∈ Ωt (see the formulation of [30]).

This approach leads to a linear model that allows the standard SDDP solves large-

scale instances. Model 1 is formulated as follows, where the risk constraints appear

highlighted but obviously can be added to Xt. Remark that SDDP assumes stage-

wise independence.

min −E[WT ]

s.t. w0 ∈ X0

wt ∈ Xt(wt−1, Rt), ∀t = 1, . . . , T

min
uωt

{
uωt + 1

α
E[(−Wt+1 − uωt)+]

}
≤ (φt − 1)Wt, ∀t = 1, . . . , T − 1

(3.16)

3.3 Model 2

Another approach is to minimize the risk of the investment. Thus, it is possible

to take advantage of SDDP’s cost-to-go functions to simplify more complex risk

measures, such as nested and composite measures. In the first case a strategy is

to minimize the average risk over time, i.e. ρ̃(−R1,−R2, . . . ,−RT )/T . By the

definition of ρ̃ presented in (2.11), this function is equivalent to

1

T
ρ̃(−R1,−R2, . . . ,−RT ) =

1

T
ρ1 ◦ ρ2 ◦ · · · ◦ ρT (−ΣtRt)

=
1

T
ρ1

(
−R1 + ρ2

(
−R2 + · · ·+ ρT (−RT )

))
.

(3.17)

Thus, for the case ρt = CAV aRα, the previous function corresponds to

1

T
CAV aRα

(
−R1 + CAV aRα

(
−R2|F1 + · · ·+ CAV aRα(−RT |FT−1)

))
. (3.18)

However, as demonstrated in [38], it is not possible to use SDDP directly to minimize

nested risk measures and this can have a negative impact on algorithm efficiency.

Thus, it is interesting to use a composite measure which does not have this limitation

and is also time consistent. Unlike the previous model, the linearization of the risk

measure is not as simple it was in equation (3.15). To overcome this problem it is

possible to use the absolute profit
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Pt = Wt −Wt−1 (3.19)

instead of return Rt. Although this alternative does not bring advances from the

theoretical point of view, it is valid to see the behavior of the strategy and it also

allows the computational advantages of using linear programming.

The objective function using a composite risk measure ρ̂(−P1, . . . ,−PT ) with

ρt = CAV aRα is

min
{

min
u0

{
u0 + α−1E[(−P1 − u0)+] + E

[
min
u1

{
u1 + α−1E[(−P2 − u1)+|F1] + . . .

+ E
[

min
uT−1

{
uT−1 + α−1E[(−PT − uT−1)+|FT−1]

}∣∣∣FT−2

]
. . .
}∣∣∣F1

]}}
. (3.20)

In order to provide a better control over the model it is necessary to include a few

constraints to ensure that the policies lead to a minimum wealth percentage set by

the investor. Again, a sequence of real numbers ϕ1, . . . , ϕT ∈ [0, 1] can be given to

represent this wealth throughout the stages. Obviously, values larger than one are

also possible, but this results in very strong impositions on the model and can lead

to infeasibility, since this condition has to be guaranteed in any scenario, including

the most pessimistic ones. Thus, for each ωt ∈ Ωt, these kind of constraints should

be included

Wt ≥ ϕtWt−1. (3.21)

Note that (1 − ϕt) can be understood as a limit to the maximum loss to which

the agent is exposed in percentage terms. This is an important metric and makes it

possible to compare both models, since their objective functions are different. For

example, after obtaining investment policies by resolving models with given values

for φt in Model 1 and (1 − ϕt) in Model 2, it is possible to use historical data or

simulate new scenarios to see if these limits are being respected.

Model 2 is expressed as

min
{

min
u0

{
u0 + α−1E[(−P1 − u0)+] + E

[
min
u1

{
u1 + α−1E[(−P2 − u1)+|F1]+

· · ·+ E
[

min
uT−1

{
uT−1 + α−1E[(−PT − uT−1)+|FT−1]

}∣∣∣FT−2

]
. . .
}∣∣∣F1

]}}
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s.t. w0 ∈ X0

wt ∈ Xt(wt−1, Rt), ∀t = 1, . . . , T

Wt ≥ ϕtWt−1, ∀t = 1, . . . , T

.

(3.22)

and, of course, the constraint (3.21) can be included to each set Xt.
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Chapter 4

Methodology

The methodology used in the case study is composed by three steps: I. Assets

selection; II. Scenario tree generation; and III. Portfolio optimization. In the first

one, the fifty shares that compose the IBrX-50 index for the four-month period

between May and August 2016 were considered. These were arranged vertically in

the Table 4.1 following descending order of tradings. For example, the ABEV3 share

was the one with the highest number of tradings in the period, followed by PETR4,

and so on until the SMLE3 share.

Table 4.1: Assets considered in this work.

ABEV3 VALE3 BBSE3 VIVT4 BRAP4

PETR4 BBAS3 LREN3 SUZB5 QUAL3

ITSA4 CIEL3 BRML3 HYPE3 EGIE3

ITUB4 CCRO3 CSNA3 SBSP3 RADL3

PETR3 GGBR4 GOAU4 CPFE3 EQTL3

BBDC4 TIMP3 WEGE3 MRVE3 NATU3

VALE5 BRFS3 UGPA3 BRKM5 PCAR4

BVMF3 CMIG4 LAME4 ESTC3 CSAN3

JBSS3 EMBR3 USIM5 CTIP3 MULT3

KROT3 BBDC3 KLBN11 FIBR3 SMLE3

The returns of these assets were simulated using the GBM. This choice was based

on two factors. Firstly because it does not create dependency between the stages

and this is an important premise for using SDDP. For this same reason the variable
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used was the returns Rt instead of the stock prices St. As shown in the Section

2.1, knowing the parameters µ′ and Σ′ and generating samples Nk, the returns are

calculated only by setting a time interval ∆t. This does not occur with the prices

St, which are a function of the values obtained in the previous stage. In addition,

to ensure independence property, this approach also keeps the scenario tree more

compact. Consider, for example, that each stage has three possible scenarios of

returns. The tree representing these returns grows at the ratio 3(T − 1) and the

stock prices tree grows exponentially at rate 3T−1, since each node represents a

possible combination between Rt e Rt−1. Note that the term T − 1 appears because

the tree starts from a single root node in both cases, i.e. when t = 0. The Figure

4.1 allows us to view this simple example.

(a) Nodes with dependence (b) Nodes without dependence

Figure 4.1: Structure of the scenario tree with and without dependence.

The second reason for using GBM is that the investment strategy of this study is

short/medium term, while more sophisticated models for prices volatility are needed

in long term situations. The period of two years between 2/1/2014 and 1/31/2016

was adopted for the collection of historical data and evaluation of µ′ and Σ′. Stages

were defined monthly, starting in February 2016 (t = 0) and ending in January 2017

(t = T = 11), and ∆t = 21 days approximately, as it is common in the financial

market. For each stage were generated |Ωt| = 30 simulations of Rt with the same

probability. The Figure 4.2 shows the average rate of these returns for all fifty assets

considered in this study over time, only as an exemplification proposal. It should be
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interpreted as a single scenario among all those that are possible for the problem.

Figure 4.2: Assets average returns.

To approximate the prices of these assets using SG, it is necessary to consider

the sigma-algebras are finite. The entries Ri
t and wit are Ft-mensurable and they can

be represented as vectors (Ri
t,a)a∈Ωt and (wit,a)a∈Ωt ∈ R|Ωt|, respectively. Thus, let

Rt,a = (R1
t,a, R

2
t,a, . . . , R

n
t,a) and wt,a = (w1

t,a, w
2
t,a, . . . , w

n
t,a) ∈ Rn, the self-financing

constraint (when t ∈ T ) becomes

n∑
i=1

witk−1,a(1 +Ri
tk,b

) =
n∑
i=1

wtk,b, ∀k = 1, . . . ,M , a ∈ Ωtk−1, b ∈ Ωtk (4.1)

and if t /∈ T it is only needed to add constraints that update the amount applied in

each share, i.e.

wtk,b = (1 +Ri
tk,b

)witk−1,a, a ∈ Ωtk−1, b ∈ Ωtk . (4.2)

Also, note that for a vector Zt+1 = (Zt+1,a)a∈Ωt+1 it is possible to write, for each

element a ∈ Ωt

CAV aRα(Zt+1|Ft)a = min
ua

{
ua +

1

α

∑
b∈Ca

pb|a[Zt+1,b − ua]+
}

(4.3)

where pb|a is the conditional probability of b given the node a. Assuming Rt is stage-

wise independent, then the term pb|a is replaced only by the occurrence probability
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of b, i.e. pb. Thus, the constraint (3.15) is equivalent to

ut,a +
1

α

∑
b∈Ωt+1

pb[−Wt+1,b − ut,a]+ ≤ (φ− 1)Wt,a, a ∈ Ωt (4.4)

where extra variables ut,a were added. This expression can be linearized by the

following group of constraints


ut,a + α−1

∑
b∈Ωt+1

pbvt+1,b ≤ (φ− 1)Wt,a, a ∈ Ωt;

vt+1,b ≥ −Wt+1,b − ut,a;

vt+1,b ≥ 0.

(4.5)

Finally, it is easy to see that constraints (3.21) can be written as Wt+1,b ≥ ϕtWt,a,

where a ∈ Ωt and b ∈ Ωt+1. With these modifications, all constraints are adequate

for the implementation of SDDP. The Bellman equations for the objective function

of Model 1 are as follows:

QT (wT−1, RT ) = min
{
−
∑
b∈ΩT

pbWT,b

}
= min

{
−
∑
b∈ΩT

pb

( n∑
i=1

(1 +Ri
T,b)w

i
T−1,a

)}
(4.6)

for t = T , and

Qt(wt−1, Rt) = min
{
− E

[
Qt+1(wt, Rt+1)

]}
(4.7)

for t = 1, . . . , T − 1.

In Model 2, they are written as:

QT (wT−1, RT , uT−1) = min
wT,b

α−1
∑
b∈Ωt

pbvT,b

s.t. vT,b ≥ −PT,b − uT−1,a

vT,b ≥ 0

(4.8)

for the last stage, and

Qt(wt−1, Rt, ut−1) = min
wt,b,ut,b

α−1
∑
b∈Ωt

pbvT,b + ut,b + E
[
Qt+1(wt, Rt+1, ut)

]
s.t. vT,b ≥ −PT,b − uT−1,a

vT,b ≥ 0

(4.9)

for t = 1, . . . , T − 1.
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SDDP was implemented in Matlab using the toolbox FAST [50]. FAST can solve

linear multistage stochastic programs using solvers like Cplex and Gurobi. Basically,

the program should be divided into two scripts, one containing the general config-

uration parameters of SDDP and another for the formulation of the optimization

problem containing the recursive functions. At each iteration, J = 1000 paths were

sampled with Monte Carlo and the convergence test adopted was of 95% of confi-

dence (β = 0.05). Similarly, the confidence level for CAVaR in the models was also

95% (α = 0.05) and a initial capital W0 = R$ 100.00 was adopted, but all perfor-

mance analysis in this study were made in relative terms so they are not conditioned

on the amount invested initially.

Operations like selling or buying assets shares were allowed every two months,

then T := {0, 2, 4, 6, 8, 10}. This point deserves attention. FAST, as well as other

SDDP implementations, provides the solution only for the root node of the tree.

This is a common feature of multistage stochastic programs, since the main interest

is to make a decision at the present moment. Then, moving forward in time and

getting to the point where a new decision is needed, it is possible to make choices

based on new data that has occurred over this period. Real-world decisions are

also made this way. But when solving the problem it is often possible to make

simulations about the future and through them get solutions for the next stages. In

FAST, these simulations must be paths of the scenario tree (such as the set J).

At this point, two operation strategies can be proposed. In the first one, the

models are solved using SDDP and sample paths to obtain the policies in all trading

dates t ∈ T . Here 5000 trials were performed. Note that the problem was solved

only once and a planning was made for the entire investment period – obviously

the portfolio can change at each trading date. This is especially useful in a context

where there is computational limitation. The other operation strategy is to run the

SDDP every time a decision is needed, i.e. when t ∈ T . Thus, the number of stages

gets smaller because the start point forward in time and it is necessary to generate

a new tree with the information that has become known between tk−1 and tk. For

this, the stock prices from 2/1/2016 to 1/31/2017 were collected and the problem

was solved again at each trading date. The closest path to actual returns was used

to obtain the solution between tk−1 and tk − 1 and to update the capital value Wtk
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available for investment, i.e.

Wtk =
n∑
i=1

witk−1(1 +R∗itk), for k = 1, 2, . . . , K (4.10)

where R∗itk is the return of the i-th asset on the real data closest path between k− 1

and k. The comparison of the paths with the real returns was made taking the

Euclidean distance between them. Assume the first operation strategy is defined

as “planned” and the second one as “adjusted”, because in this last case newest

information is used to run the problem again.

Finally, different thresholds were adopted for the losses. Model 1, described in

(3.16), was solved with φ = {0.05, 0.10, 0.15}. The thresholds for Model 2 were ϕ =

{0.90, 0.95, 1.00} – see formulation (3.22). This resulted in twelve cases, six for the

planned strategy and six for the adjusted strategy. The performance of the policies

was evaluated using real data, in order to verify what would have been the real

investment return if the portfolio compositions found in this study were adopted.

All tests occurred on a laptop computer with a 2.4GHz quad-core processor and 8GB

of RAM. The implementation was done in Matlab R2013b using FAST 0.9.1b and

Gurobi 7.0 for optimization of linear problems. A code in Python 2.7 was developed

for the analysis of the numerical results.
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Chapter 5

Numerical Results

The results were analyzed from three points of view: The composition of the

portfolio; if the maximum losses remained under the adopted thresholds; and the

cumulative returns of the obtained policies. As the two proposed models seek dif-

ferent solutions – the objective functions, for example, measure different variables –

these analysis make the comparison between them more appropriate.

5.1 Portfolio Analysis

Portfolio charts show the percentage of capital invested per asset on each trading

date. For accurate values, see the Appendix A. The solutions between the planned

and adjusted strategies were placed side by side in order to identify the proximity

between portfolios. In the planned case, the portfolio composition for future dates

is the average among the compositions found in the 5000 simulations. Two aspects

related to investment diversification deserve attention.

The first is that the number of shares in the portfolio was higher in the inter-

mediate stages and lower in the initial and final stages. A few explanations for this

behaviour can be given. It is reasonable that the initial portfolio is less diversified

because the uncertainty at this instant is lower than in the next stages; for the last

decision, note that December is a less busy period in many areas of the economy and

this contributes to a somewhat more stable environment, reducing risk and allowing

investment to be concentrated to increase returns. The second aspect is that the

level of diversification remained the same in both models. This may be a result of
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the proximity between risk-return settings. In other words, if Model 1 maximizes

the value of the portfolio by limiting the risk of losses and Model 2 minimizes the

risk of the investment by requiring a minimum return, these approaches may be

closely depending on the values chosen for φ and ϕ.

In Model 1, the policies between planned and adjusted strategies were signifi-

cantly different from each other (with the exception of the initial portfolio, of course).

On a few occasions the assets chosen have been repeated and even in these cases

their importance in the portfolio has changed (see decisions made in April, for ex-

ample). This is associated with how distant the scenarios were to reality, but it does

not necessarily mean a bad feature. As was said, the main purpose of SG is not to

predict the future but to provide good decisions. Note that the portfolio compo-

sitions also varied greatly depending on the different values for φ, indicating that

the solutions are very sensitive to the choice of this threshold. As an exception, the

portfolio from the adjusted strategy had a greater closeness degree in the decisions

made in October and December. On this last date in particular, the selected assets

was approximately the same for all values of φ. As expected, the diversification when

φ = 0.15 (see Figure 5.3) is slightly lower than in other cases, since risk tolerance

was higher.

Figure 5.1: Portfolio composition of Model 1 with φ = 0.05.
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Figure 5.2: Portfolio composition of Model 1 with φ = 0.10.

Figure 5.3: Portfolio composition of Model 1 with φ = 0.15.

Analogously to the previous model, the investment decisions of Model 2 pre-

sented a great variation between both the planned and adjusted strategies, and as a
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function of the values for ϕ. Observe that a time consistent risk measure is used in

this case and, according to one of the definitions presented earlier, planned policies

for the future should be implemented. However, note that the results do not con-

sider the decisions of both strategies in each node of the tree, because in the planned

case the average of the solutions was adopted in each trading date. In addition, the

constraints (3.21) are very strong and must be guaranteed for all scenarios, even

those that will not occur. Differently, time consistency is addressed in the litera-

ture in models that only optimize the risk [36] or the convex combination between

it and the portfolio value [43] – therefore, they are not influenced by constraints

that determine the return on investment. Finally, the existence of multiple optimal

solutions was not investigated.

It is worth to highlight the similarity between the adjusted portfolios in December

when ϕ = 0.90 and ϕ = 0.95 (Figures 5.4 and 5.5, respectively), which allows us

to infer that the least risky assets that will result in a maximum loss of 10% of the

portfolio in this two-month period are necessarily the same. Again, the decisions for

the last date obtained with adjusted strategy are very close to each other and also

with Model 1.

Figure 5.4: Portfolio composition of Model 2 with ϕ = 0.90.
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Figure 5.5: Portfolio composition of Model 2 with ϕ = 0.95.

Figure 5.6: Portfolio composition of Model 2 with ϕ = 1.00.
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5.2 Losses Analysis

The figures below show the capital losses. The variable used was

−Rt = −Wt+1 −Wt

Wt

(5.1)

and note that these values correspond to the losses calculated by the real returns

of the assets. An interesting result is that when the thresholds were exceeded this

occurred in April and once in November (see Figure 5.12). The losses that occurred

in other months are not relevant. As this result is shared by both models and both

operating strategies, it is possible to infer that SG was not able to represent the

extremely pessimistic scenario that actually occurred in May.

The best performance was from planned policies on Model 1. Except when

φ = 0.05 (Figure 5.7), where the loss reached approximately 11.1%, all thresholds

were respected. This did not occur with the adjusted strategy, where the portfolio

value reduced 22.3%, 29.6% and 26.2% in April for the cases φ = 0.05, φ = 0.10 and

φ = 0.15, respectively.

Figure 5.7: Losses of Model 1 with φ = 0.05.
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Figure 5.8: Losses of Model 1 with φ = 0.10.

Figure 5.9: Losses of Model 1 with φ = 0.15.
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In Model 2 the limit 1− ϕ can be used for the losses. In the second case, when

ϕ = 0.95 (Figure 5.11), no threshold was exceeded. In the other two cases the losses

occurred using both planned and adjusted strategies.For ϕ = 0.90 (Figure 5.10) the

capital reduction of the adjusted portfolio was 20.7% in April while the loss of the

planned policy was 21.6%.

Finally, for ϕ = 1.00, losses are not allowed in any scenario. It is clear that

this is a very strong requirement on the model. Consequently, only in this case

the losses occurred in other dates than April (see Figure 5.12). However, they

was smaller when compared with the other cases. Note that in Model 2 the losses

between planned and adjusted strategies are closer than in Model 1. Then, it is also

expected that the returns show this same behavior.

Figure 5.10: Losses of Model 2 with ϕ = 0.90.
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Figure 5.11: Losses of Model 2 with ϕ = 0.95.

Figure 5.12: Losses of Model 2 with ϕ = 1.00.

41



5.3 Returns Analysis

This section shows the cumulative return over the investment period, which

represents the real gain of the agent if the portfolios found here were actually used.

The cumulative return at t is computed as

Rt −R0

R0

. (5.2)

Analyzing these series, it is evident that the planned strategy is the best one in

Model 1. This can be justified by the end-of-investment return, which was higher

than the results of adjusted strategy in all the cases (see Figures 5.13, 5.14 and

5.15).

Besides, the adjusted strategy seems to be more sensitive to downturn periods

as it occurs in April. Except when φ = 0.15, where the risk-tolerance is higher, the

return of the planned portfolio is stable. This does not occur with the adjusted strat-

egy. On the other hand, it seems to have a better performance after the downturn

period, recovering money more quickly.

Figure 5.13: Cumulative returns of Model 1 with φ = 0.05.
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Figure 5.14: Cumulative returns of Model 1 with φ = 0.10.

Figure 5.15: Cumulative returns of Model 1 with φ = 0.15.
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In Model 2 the adjusted portfolios was better along all the investment and

achieved higher returns in the last period. These results show that the independent

CAVaR works better if combined with the planned strategy and the multiperiod

composite measure works better with the adjusted strategy. In this study the time

inconsistent risk measure was more appropriated for the situation where the prob-

lem was solved at once and the portfolio follow the planning done. If the measure

is time consistent it will be better when it is possible to use the newest information

and solve the problem again. In each trading date, a new tree is generated to run

the SDDP but only the root node solution matters.

Therefore, only the risk measure with time consistency achieved the advantages

of using data from the scenario that actually occurred to adjust the problem. These

results can be faced with [43], where the authors encourage to use of these measures

when it is possible to solve the problem in each stage. Differently from this work,

here it is not coherent to evaluate the gap between the planned and the adjusted

investment because the returns are being calculated directly by real values and not by

the objective functions. Besides, the planned policies were derived from simulations

while the gap is computed considering the paths of the tree.

Figure 5.16: Cumulative returns of Model 2 with ϕ = 0.90.
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Figure 5.17: Cumulative returns of Model 2 with ϕ = 0.95.

Figure 5.18: Cumulative returns of Model 2 with ϕ = 1.00.
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As a basis for comparison, the portfolio values were also computed using the

the IBrX-50 index and a naive 1/n portfolio, where the applied capital is equally

divided among all the assets. The results for the planned and adjusted strategies are

summarized in the Figures 5.19 and 5.20, respectively. Note that Model 1 is able to

obtain higher returns at the end of the investment more frequently, which could be

explained by the objective functions of the two formulations. Observe that, in this

model, the expected value of the portfolio in the last stage is maximized. In Model 2

the policies minimize the risk, leading to smaller losses along the investment period

in all the cases.

In both operation strategies the four best cases are the same: Model 1 with

φ = 0.10 and φ = 0.15 and Model 2 with ϕ = 0.90 and ϕ = 0.95, but alternate their

positions. Analogously, the general ranking of both models follow this same behavior

and a particular case changes only one position from one strategy to the other. But

this does not mean that is convenient to ignore the operation type. Instead, it is

essential to determine which case has the best performance – considering that the

agent will chose one of these thresholds.

Note that, in the planned strategy, the Model 1 with φ = 0.10 is the best

approach because it got the third higher cumulative return and also kept the losses

under the threshold. Thus, when the agent wishes to plan a priori decisions of

buying or selling assets shares including the next stages, this could be a good choice.

When it is possible solve the problem containing all the available information and

only the decision to be taken at present moment matters, the Model 2 with ϕ = 0.95

is the better approach. It had the higher return on investment while ensure a more

stable behavior along the period. Note that this case also suffered less in the worst

date (April). However, as previously stated, this is a strong constraint and not

always can lead to feasible solutions. In fact, the real-world decisions usually occur

using the most recent data, but both operation strategies have practical application

and can be justified in specific contexts.
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Figure 5.19: Cumulative returns from planned strategy.

Figure 5.20: Cumulative returns from adjusted strategy.
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Table 5.1 shows the return of investment for all the case studies. Observe that

these values correspond to the real portfolio gain and, as can be seen, it was possible

to obtain returns that are much higher than the IBrX-50 index. Also, note that it

is simply the cumulative return in the last period, i.e.

WT −W0

W0

. (5.3)

Obviously, other market indexes and portfolios could have been used in this com-

parison, but it was decided to include only cases where the same fifty assets are

available for trading.

Table 5.1: Return on investment of the study cases.

Planned Strategy Adjusted Strategy

Model 1, φ = 0.05 40.13% 27.54%

Model 1, φ = 0.10 71.87% 64.61%

Model 1, φ = 0.15 76.67% 71.74%

Model 2, ϕ = 0.90 76.77% 72.48%

Model 2, ϕ = 0.95 70.26% 78.14%

Model 2, ϕ = 1.00 12.50% 21.16%

IBrX-50 51.22% 51.22%

Naive 1/n 53.97% 53.97%
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Chapter 6

Conclusions

This work addresses the multistage wealth allocation problem using conditional

risk measures. Two formulations were proposed in a proper structure for the di-

rect use of risk-neutral Stochastic Dual Dynamic Programming – SDDP. The first

maximizes the expected value of the portfolio at the end of the investment and uses

constraints to limit losses. The second minimizes the risk over the period and ensures

a given profitability through constraints. In each model, two operation strategies

were adopted: At first SDDP is used only once and plans decisions for all trading

dates making simulations; the second runs SDDP on every trading date using always

the newest information. Also, three risk/return thresholds were used in each model,

representing different choices of an agent. This resulted in twelve cases that were

numerically analyzed using real assets present in the IBrX-50 index.

The performance of the portfolios found by the optimization models was eval-

uated using stock prices collected during the period of the study. The return on

investment was significantly higher than IBrX-50 index and a naive portfolio. The

scenario tree was generated by the Geometric Brownian Motion – GBM. The great

variety of available assets allowed a realistic representation of the problem. In ad-

dition, the combined use between GBM and SDDP was not found in other works.

The computational effort was reasonable and it shows the relevance of the approach

addressed here for dealing with this kind of problems. These are the main contri-

butions of this work.

Only at one stage the scenario set failed to capture the pessimistic returns that

actually occurred, reducing the portfolio value and making some of the thresholds to
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be exceeded. Future works may use other techniques for scenario generation, espe-

cially those that can represent extreme events. Although they have a low probability

of occurrence, it is especially useful to consider these events on solving risk-averse

optimization problems. However, it is important to maintain the independence be-

tween the stages to use SDDP directly. Another approach is to generate extremely

large trees and use scenario reduction techniques, in order to ensure that smaller

trees be a good representation of reality.

An important direction to extend the research is the evaluation of time con-

sistency between the planned policy and the one that is being adjusted with the

SDDP reimplementation. Here this was not possible because the planned case was

obtained by taking the average from the portfolios performing simulations of the

future, and the performance of the portfolios was calculated using their real returns.

Consistency was evaluated in each path and considering values from the objective

function. In this context, it is interesting to investigate the effect of the risk/return

constraints on the time consistency of the solutions, because the literature’s models

only optimize the risk or the convex combination between it and the expected value

of the portfolio. In addition, this topic still is in discussion and new risk measures

can be proposed, including non-linear models.

Finally, other analyses can be performed about the portfolios obtained here. In

quantitative terms, scenario generation can be used for ex post evaluation, especially

paths that were not considered by the optimization problem. Statistical measures

commonly adopted in finance such as Sharpe ratio and Jensen’s alpha can also be

used. Qualitatively, these results can be discussed considering the economic and

political environment of the country.
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[6] KOZMÍK, V., MORTON, D. P., “Evaluating policies in risk-averse multi-stage

stochastic programming”, Mathematical Programming , v. 152, n. 1-2,

pp. 275–300, 2015.

[7] DOGNINI, L. L. B., Multi-Period Risk Management and Portfolio Optimization:

Case Studies of BM&F-BOVESPA Assets , Master’s Thesis, Instituto Na-
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[17] SILVENNOINEN, A., TERÄSVIRTA, T., “Multivariate GARCH models”,

Handbook of Financial Time Series , pp. 201–229, 2009.

[18] ENGLE, R. F., NG, V. K., ROTHSCHILD, M., “Asset pricing with a factor-

ARCH covariance structure: Empirical estimates for treasury bills”, Jour-

nal of Econometrics , v. 45, n. 1-2, pp. 213–237, 1990.

[19] NELSON, D. B., “Conditional heteroskedasticity in asset returns: A new ap-

proach”, Econometrica, v. 59, n. 2, pp. 347–370, 1991.

52



[20] ENGLE, R. F., NG, V. K., “Measuring and testing the impact of news on

volatility”, The Journal of Finance, v. 48, n. 5, pp. 1749–1778, 1993.

[21] SCHWERT, G. W., “Why does stock market volatility change over time?” The

Journal of Finance, v. 44, n. 5, pp. 1115–1153, 1989.

[22] ZAKOIAN, J.-M., “Threshold heteroskedastic models”, Journal of Economic

Dynamics and Control , v. 18, n. 5, pp. 931–955, 1994.

[23] HANSEN, P. R., LUNDE, A., NASON, J. M., “The model confidence set”,

Econometrica, v. 79, n. 2, pp. 453–497, 2011.

[24] MESSINA, E., TOSCANI, D., “Hidden Markov models for scenario genera-

tion”, IMA Journal of Management Mathematics , v. 19, n. 4, pp. 379–401,

2008.

[25] LUO, C., SECO, L. A., WANG, H., et al., “Risk modeling in crude oil market:

A comparison of Markov switching and GARCH models”, Kybernetes ,

v. 39, n. 5, pp. 750–769, 2010.

[26] LEHAR, A., SCHEICHER, M., SCHITTENKOPF, C., “GARCH vs stochastic

volatility: Option pricing and risk management”, Journal of Banking &

Finance, v. 26, n. 2, pp. 323–345, 2002.

[27] KUNG, L.-M., YU, S.-W., “Prediction of index futures returns and the analysis

of financial spillovers - A comparison between GARCH and the grey the-

orem”, European Journal of Operational Research, v. 186, n. 3, pp. 1184–

1200, 2008.
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[37] RUSZCZYŃSKI, A., “Risk-averse dynamic programming for Markov decision

processes”, Mathematical Programming , v. 125, n. 2, pp. 235–261, 2010.

[38] PHILPOTT, A. B., DE MATOS, V. L., “Dynamic sampling algorithms for

multi-stage stochastic programs with risk aversion”, European Journal of

Operational Research, v. 218, n. 2, pp. 470–483, 2012.
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Appendix A

Portfolio Composition

Table A.1: Portfolio composition of Model 1 with φ = 0.05 (in %).

Planned Strategy (2016) Adjusted Strategy (2016)

Fev Apr Jun Aug Oct Dec Fev Apr Jun Aug Oct Dec

BRFS3 2.2 6.9 0 0 15.5 0 2.2 0 0 0 0 0

BRKM5 4.0 0 0 3.7 0 0 4.0 0 0 0.9 0 0

BRML3 0 14.9 0 0 0 0 0 0 0 0 0 0

BVMF3 0 0 0 0 16.1 0 0 0 0 0 0 0

CIEL3 0 0 0 27.5 0 0 0 0 0 0 0 0

CPFE3 0 0 0 0 2.9 0 0 0 0 0 0 0

CSAN3 0 0 0 0 0 0 0 0 2.9 12.8 0 0

CTIP3 0 0 1.1 0 0 0 0 0 0 0 0.1 0

EMBR3 0 6.7 0 0 0 0 0 0 0 4.5 11.1 0

EQTL3 0 0 0 0 0 0 0 0 0 0 6.1 0

FIBR3 17.3 0 9.3 0 0.3 0 17.3 0 0 5.7 8.1 0

GGBR4 29.3 0 0 0 0 0 29.3 0 0 7.9 0 0

GOAU4 0 1.3 33.9 11.7 0 0 0 25.7 14.5 0.3 0 0

HYPE3 0 0 0 0 2.7 21.5 0 0 0 7.9 0 2.3

JBSS3 2.6 0 0 0 0 0 2.6 0 0 15.6 0 0

KROT3 0 0 0 0 1.0 1.1 0 0 0 0 0 25.7

LAME4 0 0 0 0 11.9 0 0 0 0 0 1.5 29.2

LREN3 0 0 0 0 0.6 17.5 0 0 0 0 1.0 6.7

MRVE3 13.0 0 0 0 0 0 13.0 0 0 0 0 0

MULT3 0 0 0 0 0.6 0 0 0 0 0 28.8 0

PCAR4 0 0 0.5 0 0 0 0 17.2 6.6 0 0 0

PETR3 0 0 0 0 0 18.1 0 0 0 0 0 0

PETR4 0 0 0 1.9 0 0 0 0 0 0 0 0
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Planned Strategy (2016) Adjusted Strategy (2016)

Fev Apr Jun Aug Oct Dec Fev Apr Jun Aug Oct Dec

QUAL3 0 0 21.4 0 0 0 0 10.5 21.1 8.0 0 0

RADL3 0 0 0 0 2.3 0 0 0 0 0 18.9 36.0

SBSP3 0 0 0 0 0 11.4 0 0 0 0 0 0

SMLE3 0 36.2 6.2 12.9 13.3 30.5 0 0 0 0 4.2 0

SUZB5 3.8 0 13.1 6.8 32.9 0 3.8 6.1 21.0 13.8 0 0

TIMP3 15.4 0 0 10.1 0 0 15.4 13.3 16.8 0 0 0

USIM5 0 7.5 0 5.0 0 0 0 7.1 4.0 9.0 0 0

VALE3 0 0 0 0 0 0 0 0 13.2 0 0 0

VALE5 7.6 10.8 0 10.2 0 0 7.6 20.1 0 13.6 2.3 0

VIVT4 0 0 0 10.2 0 0 0 0 0 0 0 0

WEGE3 4.8 15.6 14.3 0 0 0 4.8 0 0 0 17.9 0

Table A.2: Portfolio composition of Model 1 with φ = 0.10 (in %).

Planned Strategy (2016) Adjusted Strategy (2016)

Fev Apr Jun Aug Oct Dec Fev Apr Jun Aug Oct Dec

BRAP4 0 0 12.7 0 0 0 0 0 0 0 0 0

BRFS3 0 0 0 0 16.2 0 0 0 0 0 0 0

BRKM5 0 0 0 0 0 0 0 0 0 10.2 0 0

BRML3 0 10.6 0 0 0 0 0 0 0 0 0 0

BVMF3 0 0 0 0 5.9 0 0 0 0 0 0 0

CCRO3 0 0 0 0 0 0 0 10.6 0 0 0 0

CIEL3 0 0 0 3.1 0 0 0 0 0 0 0 0

CSAN3 0 0 0 0 0 0 0 0 0 16.4 0 0

CSNA3 25.8 0 0 0 0 0 25.8 0 0 0 0 0

CTIP3 0 0 0 0 0 0 0 0 0 0 0.1 0

EMBR3 0 0 0 0 0 0 0 0 0 0 11.1 0

EQTL3 0 0 0 0 0.5 0 0 0 0 0 6.1 0

ESTC3 0 0 0 0 0 0 0 5.4 0 0 0 0

FIBR3 0 0 20.7 0 8.6 0 0 0 0 9.6 8.1 0

GOAU4 28.0 28.7 40.1 34.3 0 0 28.0 49.9 10.1 14.6 0 0

HYPE3 2.0 0 0 0 0 21.5 2.0 0 0 0 0 2.3

JBSS3 0 0 0 0 0 0 0 0 0 8.6 0 0

KROT3 0 0 0 0 1.1 1.1 0 0 0 0 0 25.7

LAME4 0 0 0 0 3.0 0 0 0 0 0 1.5 29.2

LREN3 0 0 0 0 1.9 17.5 0 0 0 0 1.0 6.7

MULT3 0 0 0 0 4.5 0 0 0 0 0 28.8 0
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Planned Strategy (2016) Adjusted Strategy (2016)

Fev Apr Jun Aug Oct Dec Fev Apr Jun Aug Oct Dec

NATU3 0 0 0 3.8 0 0 0 0 0 0 0 0

PCAR4 0 0 0 0 15.7 0 0 0 6.1 0 0 0

PETR3 0 0 0 0 0 18.1 0 0 0 0 0 0

QUAL3 14.5 0 0 0 0 0 14.5 0 34.5 24.3 0 0

RADL3 0 0 0 0 11.8 0 0 0 0 0 18.9 36.0

SBSP3 0 0 0 0 0 11.4 0 0 0 0 0 0

SMLE3 0 40.4 0 0 6.8 30.5 0 0 0 0 4.2 0

SUZB5 0 0 0 0 24.0 0 0 1.4 0 13.1 0 0

TIMP3 5.6 0 0 28.2 0 0 5.6 11.2 9.4 0 0 0

USIM5 5.5 12.9 0 19.1 0 0 5.5 0 4.2 3.1 0 0

VALE3 0 0 0 0 0 0 0 0 35.9 0 0 0

VALE5 0 0 0 0 0 0 0 21.4 0 0 2.3 0

VIVT4 0 0 26.5 11.5 0 0 0 0 0 0 0 0

WEGE3 18.5 7.4 0 0 0 0 18.5 0 0 0 17.9 0

Table A.3: Portfolio composition of Model 1 with φ = 0.15 (in %).

Planned Strategy (2016) Adjusted Strategy (2016)

Fev Apr Jun Aug Oct Dec Fev Apr Jun Aug Oct Dec

ABEV3 0 0 12.6 12.6 0 0 0 0 0 0 0 0

BBSE3 0 0 4.1 0 0 0 0 0 0 0 0 0

BRAP4 0 5.1 0 0 0 0 0 0 0 0 0 0

BRFS3 0 20.2 0 4.8 15.7 0 0 0 0 0 0 0

BRKM5 0 0 0 15.9 0 0 0 0 0 0 0 0

BRML3 0 5.7 0 0 0 0 0 0 0 0 0 0

BVMF3 0 0 0 0 5.7 6.1 0 0 0 0 0 0

CCRO3 0 0 4.2 0 0 0 0 0 0 0 0 0

CIEL3 0 0 2.6 18.3 0 0 0 0 0 0 0 0

CPFE3 0 0 0.6 0 0 0 0 0 0 0 0 0

CSAN3 8.5 0 0 0 0 0 8.5 0 0 13.0 0 0

CSNA3 13.6 0 0 0 0 0 13.6 8.5 0 0 0 0

CTIP3 0 2.0 0 0 0 0 0 0 0 0 0.1 0

EGIE3 0 0 0 1.6 0 0 0 0 0 0 0 0

EMBR3 0 0 0.8 0 0 0 0 0 0 0 10.2 0

EQTL3 0 0 12.0 0 0 0 0 0 0 0 5.8 0

ESTC3 0 0 0 4.4 0 0 0 0 0 0 0 0

FIBR3 0 0 0.9 0 10.5 19.8 0 0 0 4.8 8.0 0
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Planned Strategy (2016) Adjusted Strategy (2016)

Fev Apr Jun Aug Oct Dec Fev Apr Jun Aug Oct Dec

GGBR4 0 0 0 0 0 0 0 0 0 16.4 0 0

GOAU4 16.0 16.5 0 0 0 0 16.0 31.5 11.7 0 0 0

HYPE3 0 0 0 0 0 24.3 0 0 0 8.5 0 2.6

ITUB4 0 0 0 0 0 20.4 0 0 0 0 0 0

JBSS3 0 2.0 0 0 0 0 0 0 0 15.4 0 0

KROT3 0 0 0 0 0.8 3.1 0 0 0 0 0 27.1

LAME4 0 0 0 0 3.2 0 0 0 0 0 1.5 26.0

LREN3 0 0 0 0.1 2.1 5.6 0 0 0 0 0.9 6.4

MULT3 0 14.7 0 0 7.5 0 0 0 0 1.5 29.4 0

NATU3 0 0 0 3.2 0 0 0 0 16.1 0 0 0

PCAR4 0 0 10.3 0 17.5 0 0 11.3 11.3 0 0 0

QUAL3 16.6 0 0 0 0 0 16.6 6.3 19.4 10 0 0

RADL3 0 0 0 0 12.1 0 0 0 0 0 19.7 37.9

SMLE3 0 28.6 10 10.4 4.3 17.4 0 0 0 0 4.2 0

SUZB5 0 0 14.3 6.3 19.8 3.4 0 0 0 11.3 0 0

TIMP3 3.6 0 2.0 8.6 0 0 3.6 12.4 21.9 0 0 0

USIM5 6.8 1.1 0 0 0 0 6.8 8.5 2.8 5.6 0 0

VALE3 0 0 0 0 0 0 0 21.5 16.8 0 0 0

VALE5 34.9 0 0 0 0 0 34.9 0 0 13.6 2.3 0

VIVT4 0 0 21.4 0 0 0 0 0 0 0 0 0

WEGE3 0 4.2 4.2 13.8 0.7 0 0 0 0 0 18.0 0

Table A.4: Portfolio composition of Model 2 with ϕ = 0.90 (in %).

Planned Strategy (2016) Adjusted Strategy (2016)

Fev Apr Jun Aug Oct Dec Fev Apr Jun Aug Oct Dec

BRFS3 0 0 0 0 19.2 0 0 0 0 0 0 0

BRKM5 0 0 0 0 0 0 0 0 0 5.7 3.4 0

BRML3 0 22.9 0 0 0 0 0 0 0 0 0 0

BVMF3 0 0 0 0 20.9 0 0 0 0 0 0 0

CIEL3 0 0 0 12.3 0 0 0 0 0 0 0 0

CPFE3 0 0 0 0 1.9 0 0 0 0 0 6.4 0

CSAN3 0 0 0 0 0 0 0 10.2 4.8 0 0 0

CSNA3 32.0 0 0 0 0 0 32.0 5.3 0 0 0 0

CTIP3 0 0 0 0 0 0 0 0 0 0 8.4 0

EGIE3 0 0 0 0 0 0 0 0 0 18.4 0 0

EMBR3 0 0 0 0 0 0 0 0 0 7.9 15.6 0
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Planned Strategy (2016) Adjusted Strategy (2016)

Fev Apr Jun Aug Oct Dec Fev Apr Jun Aug Oct Dec

ESTC3 0 0 0 0.1 0 0 0 0 0 0 0 0

FIBR3 0 0 14.3 0 0 0 0 0 0 22.8 16.2 12.6

GGBR4 0 0 0 0 0 0 0 26.1 14.0 0 0 0

GOAU4 27.3 34.5 48.8 21.8 0 0 27.3 0 0 0 0 0

HYPE3 11.0 0 0 0 2.7 21.5 11.0 0 0 0 0 0

JBSS3 0 0 0 0 0 0 0 1.6 15.6 18.0 5.4 0

KLBN11 0 0 0 0 0 0 0 0 0 0 10.9 0

KROT3 0 0 0 0 2.2 1.1 0 0 0 0 8.0 3.2

LAME4 0 0 0 0 6.9 0 0 0 0 0 0 25.1

LREN3 0 0 0 0 1.4 17.5 0 0 0 0 0 2.0

MULT3 0 0 0 0 0 0 0 0 0 6.4 8.7 0

NATU3 0 16.3 0 4.9 0 0 0 0 0 0 0 0

PCAR4 0 0 0 0 1.9 0 0 0 1.1 0 0 0

PETR3 0 0 0 0 0 18.1 0 0 0 0 0 0

QUAL3 0 0 5.9 0 0 0 0 19.7 28.2 7.9 0 0

RADL3 0 0 0 0 4.2 0 0 0 0 0 7.1 56.3

SBSP3 0 0 0 0 0 11.4 0 0 0 0 0 0

SMLE3 0 14.7 0 3.4 5.6 30.5 0 0 0 0 4.9 0

SUZB5 0 0 0 8.1 33.2 0 0 6.5 29.4 0 0 0.9

TIMP3 8.7 0 9.3 26.2 0 0 8.7 0 0 0 0 0

USIM5 3.0 11.6 0 16.3 0 0 3.0 0 0 0 0 0

VALE3 0 0 0 0 0 0 0 0 6.8 0 0 0

VALE5 11.5 0 18.1 0 0 0 11.5 30.6 0 13.0 4.9 0

VIVT4 0 0 3.5 6.9 0 0 0 0 0 0 0 0

WEGE3 6.6 0 0 0 0 0 6.6 0 0 0 0 0

Table A.5: Portfolio composition of Model 2 with ϕ = 0.95 (in %).

Planned Strategy (2016) Adjusted Strategy (2016)

Fev Apr Jun Aug Oct Dec Fev Apr Jun Aug Oct Dec

BRAP4 0 0 4.4 0 0 0 0 0 0 0 0 0

BRFS3 0 10.9 0 0 23.8 0 0 0 0 0 0 0

BRKM5 0 0 0 8.2 0 0 0 0 2.4 7.4 0 0

BRML3 0 7.8 0 0 0 0 0 0 0 0 0 0

BVMF3 0 0 0 0 1.1 6.1 0 0 0 0 0 0

CIEL3 0 0 0 2.7 0 0 0 0 0 0 0 0

CPFE3 0 0 5.3 0 0 0 0 0 1.5 0 2.6 0

61



Planned Strategy (2016) Adjusted Strategy (2016)

Fev Apr Jun Aug Oct Dec Fev Apr Jun Aug Oct Dec

CSAN3 26.6 0 0 0 0 0 26.6 22.0 3.3 0 0 0

CTIP3 0 0 19.9 0 1.7 0 0 0 0 7.0 12.0 0

EGIE3 0 0 0 7.2 0 0 0 0 8.5 5.3 0 0

EMBR3 0 0 0 0 0 0 0 0 9.2 6.5 13.2 0

EQTL3 0 0 1.5 0 0 0 0 0 0 0 0 0

ESTC3 0 0 0 2.2 0 0 0 0 0 0 0 0

FIBR3 0 0 11.6 0 0.1 19.7 0 15.9 13.3 14.6 13.4 9.4

GGBR4 0 0 6.5 0 0 0 0 0 6.2 4.9 5.6 0

GOAU4 35.8 0.6 0.3 0 0 0 35.8 12.3 0 0 0 0

HYPE3 0 0 0 0 0.8 24.3 0 0 2.8 0 0 0

ITUB4 0 0 0 0 0 20.4 0 0 0 0 0 0

JBSS3 0 21.2 0 0.2 0 0 0 2.7 9.3 19.8 3.9 0

KLBN11 0 0 0 0 0 0 0 0 0 0 17.4 0

KROT3 0 0 0 0 0.4 3.1 0 0 0 0 9.1 3.1

LAME4 0 0 0 0 0 0 0 0 0 0 0 29.2

LREN3 0 0 0 0 1.6 5.6 0 0 0 0 0 2.1

MULT3 0 0 0 0 10.5 0 0 0 7.8 13.4 4.0 0

NATU3 0 20.2 0 10.3 0 0 0 0 0 0 0 0

PCAR4 0 0 0.9 0 13.7 0 0 0 0 0 0 0

PETR4 0 0 0 4.8 0 0 0 0 0 0 0 0

QUAL3 0 0 3.9 0 0 0 0 19.7 10.9 1.0 0 0

RADL3 0 3.9 0 0 4.0 0 0 0 0 14.9 6.4 55.4

SBSP3 0 0 0.8 0 0 0 0 0 0 0 0 0

SMLE3 0 13.7 12.5 9.0 7.4 17.4 0 0 0 0 9.2 0

SUZB5 0 0 8.8 35.5 34.9 3.4 0 16.7 11.1 0 0 0.7

TIMP3 6.9 0 6.7 6.3 0 0 6.9 0 0 0 0 0

VALE3 0 0 0 0 0 0 0 3.8 13.8 0 0 0

VALE5 30.7 0 0 0 0 0 30.7 6.9 0 0.3 3.1 0

VIVT4 0 0 11.2 13.6 0 0 0 0 0 0 0 0

WEGE3 0 21.8 5.4 0 0 0 0 0 0 4.9 0 0

Table A.6: Portfolio composition of Model 2 with ϕ = 1.00 (in %).

Planned Strategy (2016) Adjusted Strategy (2016)

Fev Apr Jun Aug Oct Dec Fev Apr Jun Aug Oct Dec

ABEV3 0 0 0 0 29.5 0 0 0 0 0 0 0

BRAP4 0 3.3 0 0 0 0 0 0 0 0 0 0
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Planned Strategy (2016) (2016) Adjusted Strategy (2016)

Fev Apr Jun Aug Oct Dec Fev Apr Jun Aug Oct Dec

BRFS3 0 15.4 7.3 0 0 0 0 0 0 0 0 0

BRKM5 0 0 4.8 7.5 0 0 0 0 0 0 10 0

BVMF3 0 0 0 0 0 13.9 0 0 0 0 0 0

CIEL3 0 0 0 0 0 6.9 0 0 0 0 0 0

CPFE3 0 0 0 0 0 0 0 0 0 24.5 3.4 0

CSAN3 0 0 0 0 0 0 0 0 18.1 1.9 0 0

CTIP3 0 0 0 0 0 0 0 0 0 0 2.3 0

EMBR3 0 0 31.8 6.7 0 0 0 0 0 4.0 11.3 0

EQTL3 0 0 0 29.7 21.5 0 0 0 0 0 0 0

FIBR3 3.3 0 0 3.2 0 0 3.3 0 0 0.6 11.9 0

GGBR4 1.8 0 0 0 0 0 1.8 24.2 0 0 0 0

GOAU4 18.4 29.1 0 0 0 0 18.4 2.5 11.2 0 0 0

HYPE3 0 0 0 0 0 51.6 0 0 0 4.5 0 2.0

JBSS3 5.3 6.3 6.1 0.4 0 0 5.3 7.8 15.2 16.8 0 0

KROT3 0 1.9 0 0 0.6 3.5 0 0 0 0 2.4 24.3

LAME4 0 0 0 0 0 0 0 0 0 0 0 32.6

LREN3 0 0 0 4.4 1.3 11.2 0 0 0 0 0.2 7.1

MULT3 0 0 25.7 0 0 0 0 0 0 0.1 17.4 0

PCAR4 19.3 0 0 0 0 0 19.3 20.3 7.8 2.0 0 0

PETR4 0 5.7 0 0 0 0 0 0 0 0 0 0

QUAL3 7.4 29.8 0 4.7 0 0 7.4 0 7.8 3.9 0 0

RADL3 0 0 24.3 37.1 0.5 0 0 0 0 0 28.2 34.0

SMLE3 0 8.6 0 0 12.9 0 0 0 0 0 10.7 0

SUZB5 0 0 0 1.6 8.3 13.0 0 3.2 23.7 27.0 0 0

TIMP3 3.9 0 0 0 0 0 3.9 16.0 2.3 0 0 0

USIM5 5.5 0 0 0 0 0 5.5 5.7 3.7 0 0 0

VALE3 0 0 0 0 0 0 0 1.3 6.7 14.8 0 0

VIVT4 0 0 0 0 25.5 0 0 0 0 0 0 0

WEGE3 35.1 0 0 4.8 0 0 35.1 19.0 3.6 0 2.0 0

63


	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective and Contributions
	Outline

	Literature Review
	Scenario Generation
	Conditional Risk Measures
	Multistage Stochastic Programs

	Wealth Allocation Problem
	Basic Constraints
	Model 1
	Model 2

	Methodology
	Numerical Results
	Portfolio Analysis
	Losses Analysis
	Returns Analysis

	Conclusions
	Bibliography
	Portfolio Composition

